1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
use core::{marker::PhantomData, ptr::NonNull};

use generic_array::ArrayLength;

use crate::{
    sealed::spsc as sealed,
    spsc::{MultiCore, Queue},
};

impl<T, N, U, C> Queue<T, N, U, C>
where
    N: ArrayLength<T>,
    U: sealed::Uxx,
    C: sealed::XCore,
{
    /// Splits a statically allocated queue into producer and consumer end points
    pub fn split<'rb>(&'rb mut self) -> (Producer<'rb, T, N, U, C>, Consumer<'rb, T, N, U, C>) {
        (
            Producer {
                rb: unsafe { NonNull::new_unchecked(self) },
                _marker: PhantomData,
            },
            Consumer {
                rb: unsafe { NonNull::new_unchecked(self) },
                _marker: PhantomData,
            },
        )
    }
}

/// A queue "consumer"; it can dequeue items from the queue
// NOTE the consumer semantically owns the `head` pointer of the queue
pub struct Consumer<'a, T, N, U = usize, C = MultiCore>
where
    N: ArrayLength<T>,
    U: sealed::Uxx,
    C: sealed::XCore,
{
    rb: NonNull<Queue<T, N, U, C>>,
    _marker: PhantomData<&'a ()>,
}

unsafe impl<'a, T, N, U, C> Send for Consumer<'a, T, N, U, C>
where
    N: ArrayLength<T>,
    T: Send,
    U: sealed::Uxx,
    C: sealed::XCore,
{
}

/// A queue "producer"; it can enqueue items into the queue
// NOTE the producer semantically owns the `tail` pointer of the queue
pub struct Producer<'a, T, N, U = usize, C = MultiCore>
where
    N: ArrayLength<T>,
    U: sealed::Uxx,
    C: sealed::XCore,
{
    rb: NonNull<Queue<T, N, U, C>>,
    _marker: PhantomData<&'a ()>,
}

unsafe impl<'a, T, N, U> Send for Producer<'a, T, N, U>
where
    N: ArrayLength<T>,
    T: Send,
    U: sealed::Uxx,
{
}

macro_rules! impl_ {
    ($uxx:ident) => {
        impl<'a, T, N, C> Consumer<'a, T, N, $uxx, C>
        where
            N: ArrayLength<T>,
            C: sealed::XCore,
        {
            /// Returns if there are any items to dequeue. When this returns true, at least the
            /// first subsequent dequeue will succeed.
            pub fn ready(&self) -> bool {
                let head = unsafe { self.rb.as_ref().0.head.load_relaxed() };
                let tail = unsafe { self.rb.as_ref().0.tail.load_acquire() }; // ▼
                return head != tail;
            }

            /// Returns the item in the front of the queue, or `None` if the queue is empty
            pub fn dequeue(&mut self) -> Option<T> {
                let head = unsafe { self.rb.as_ref().0.head.load_relaxed() };
                let tail = unsafe { self.rb.as_ref().0.tail.load_acquire() }; // ▼

                if head != tail {
                    Some(unsafe { self._dequeue(head) }) // ▲
                } else {
                    None
                }
            }

            /// Returns the item in the front of the queue, without checking if it's empty
            ///
            /// # Unsafety
            ///
            /// If the queue is empty this is equivalent to calling `mem::uninitialized`
            pub unsafe fn dequeue_unchecked(&mut self) -> T {
                let head = self.rb.as_ref().0.head.load_relaxed();
                debug_assert_ne!(head, self.rb.as_ref().0.tail.load_acquire());
                self._dequeue(head) // ▲
            }

            unsafe fn _dequeue(&mut self, head: $uxx) -> T {
                let rb = self.rb.as_ref();

                let cap = rb.capacity();

                let item = (rb.0.buffer.as_ptr() as *const T)
                    .add(usize::from(head % cap))
                    .read();
                rb.0.head.store_release(head.wrapping_add(1)); // ▲
                item
            }
        }

        impl<'a, T, N, C> Producer<'a, T, N, $uxx, C>
        where
            N: ArrayLength<T>,
            C: sealed::XCore,
        {
            /// Returns if there is any space to enqueue a new item. When this returns true, at
            /// least the first subsequent enqueue will succeed.
            pub fn ready(&self) -> bool {
                let cap = unsafe { self.rb.as_ref().capacity() };

                let tail = unsafe { self.rb.as_ref().0.tail.load_relaxed() };
                // NOTE we could replace this `load_acquire` with a `load_relaxed` and this method
                // would be sound on most architectures but that change would result in UB according
                // to the C++ memory model, which is what Rust currently uses, so we err on the side
                // of caution and stick to `load_acquire`. Check issue google#sanitizers#882 for
                // more details.
                let head = unsafe { self.rb.as_ref().0.head.load_acquire() };
                return head.wrapping_add(cap) != tail;
            }

            /// Adds an `item` to the end of the queue
            ///
            /// Returns back the `item` if the queue is full
            pub fn enqueue(&mut self, item: T) -> Result<(), T> {
                let cap = unsafe { self.rb.as_ref().capacity() };
                let tail = unsafe { self.rb.as_ref().0.tail.load_relaxed() };
                // NOTE we could replace this `load_acquire` with a `load_relaxed` and this method
                // would be sound on most architectures but that change would result in UB according
                // to the C++ memory model, which is what Rust currently uses, so we err on the side
                // of caution and stick to `load_acquire`. Check issue google#sanitizers#882 for
                // more details.
                let head = unsafe { self.rb.as_ref().0.head.load_acquire() }; // ▼

                if tail.wrapping_sub(head) > cap - 1 {
                    Err(item)
                } else {
                    unsafe { self._enqueue(tail, item) }; // ▲
                    Ok(())
                }
            }

            /// Adds an `item` to the end of the queue without checking if it's full
            ///
            /// # Unsafety
            ///
            /// If the queue is full this operation will leak a value (T's destructor won't run on
            /// the value that got overwritten by `item`), *and* will allow the `dequeue` operation
            /// to create a copy of `item`, which could result in `T`'s destructor running on `item`
            /// twice.
            pub unsafe fn enqueue_unchecked(&mut self, item: T) {
                let tail = self.rb.as_ref().0.tail.load_relaxed();
                debug_assert_ne!(tail.wrapping_add(1), self.rb.as_ref().0.head.load_acquire());
                self._enqueue(tail, item); // ▲
            }

            unsafe fn _enqueue(&mut self, tail: $uxx, item: T) {
                let rb = self.rb.as_mut();

                let cap = rb.capacity();

                // NOTE(ptr::write) the memory slot that we are about to write to is
                // uninitialized. We use `ptr::write` to avoid running `T`'s destructor on the
                // uninitialized memory
                (rb.0.buffer.as_mut_ptr() as *mut T)
                    .add(usize::from(tail % cap))
                    .write(item);
                rb.0.tail.store_release(tail.wrapping_add(1)); // ▲
            }
        }
    };
}

impl_!(u8);
impl_!(u16);
impl_!(usize);

#[cfg(test)]
mod tests {
    use crate::{consts::*, spsc::Queue};

    #[test]
    fn sanity() {
        let mut rb: Queue<i32, U2> = Queue::new();

        let (mut p, mut c) = rb.split();

        assert_eq!(c.dequeue(), None);

        p.enqueue(0).unwrap();

        assert_eq!(c.dequeue(), Some(0));
    }
}