Files
aligned
as_slice
bare_metal
byteorder
cortex_m
cortex_m_rt
cortex_m_rt_macros
cortex_m_rtfm_macros
generic_array
hash32
heapless
proc_macro2
quote
r0
rand
rand_core
rtfm
stable_deref_trait
syn
typenum
unicode_xid
vcell
volatile_register
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
//! IMPLEMENTATION DETAILS. DO NOT USE ANYTHING IN THIS MODULE

use core::{cell::Cell, u8};

#[cfg(armv7m)]
use cortex_m::register::basepri;
pub use cortex_m::{
    asm::wfi, interrupt, peripheral::scb::SystemHandler, peripheral::syst::SystClkSource,
    peripheral::Peripherals,
};
use heapless::spsc::SingleCore;
pub use heapless::{consts, i, spsc::Queue};

#[cfg(feature = "timer-queue")]
pub use crate::tq::{NotReady, TimerQueue};

pub type FreeQueue<N> = Queue<u8, N, u8, SingleCore>;
pub type ReadyQueue<T, N> = Queue<(T, u8), N, u8, SingleCore>;

#[cfg(armv7m)]
#[inline(always)]
pub fn run<F>(priority: u8, f: F)
where
    F: FnOnce(),
{
    if priority == 1 {
        // if the priority of this interrupt is `1` then BASEPRI can only be `0`
        f();
        unsafe { basepri::write(0) }
    } else {
        let initial = basepri::read();
        f();
        unsafe { basepri::write(initial) }
    }
}

#[cfg(not(armv7m))]
#[inline(always)]
pub fn run<F>(_priority: u8, f: F)
where
    F: FnOnce(),
{
    f();
}

// Newtype over `Cell` that forbids mutation through a shared reference
pub struct Priority {
    inner: Cell<u8>,
}

impl Priority {
    #[inline(always)]
    pub unsafe fn new(value: u8) -> Self {
        Priority {
            inner: Cell::new(value),
        }
    }

    // these two methods are used by `lock` (see below) but can't be used from the RTFM application
    #[inline(always)]
    fn set(&self, value: u8) {
        self.inner.set(value)
    }

    #[inline(always)]
    fn get(&self) -> u8 {
        self.inner.get()
    }
}

#[inline(always)]
pub fn assert_send<T>()
where
    T: Send,
{
}

#[inline(always)]
pub fn assert_sync<T>()
where
    T: Sync,
{
}

#[cfg(armv7m)]
#[inline(always)]
pub unsafe fn lock<T, R>(
    ptr: *mut T,
    priority: &Priority,
    ceiling: u8,
    nvic_prio_bits: u8,
    f: impl FnOnce(&mut T) -> R,
) -> R {
    let current = priority.get();

    if current < ceiling {
        if ceiling == (1 << nvic_prio_bits) {
            priority.set(u8::MAX);
            let r = interrupt::free(|_| f(&mut *ptr));
            priority.set(current);
            r
        } else {
            priority.set(ceiling);
            basepri::write(logical2hw(ceiling, nvic_prio_bits));
            let r = f(&mut *ptr);
            basepri::write(logical2hw(current, nvic_prio_bits));
            priority.set(current);
            r
        }
    } else {
        f(&mut *ptr)
    }
}

#[cfg(not(armv7m))]
#[inline(always)]
pub unsafe fn lock<T, R>(
    ptr: *mut T,
    priority: &Priority,
    ceiling: u8,
    _nvic_prio_bits: u8,
    f: impl FnOnce(&mut T) -> R,
) -> R {
    let current = priority.get();

    if current < ceiling {
        priority.set(u8::MAX);
        let r = interrupt::free(|_| f(&mut *ptr));
        priority.set(current);
        r
    } else {
        f(&mut *ptr)
    }
}

#[inline]
pub fn logical2hw(logical: u8, nvic_prio_bits: u8) -> u8 {
    ((1 << nvic_prio_bits) - logical) << (8 - nvic_prio_bits)
}