1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
//! A type-level array of type-level numbers.
//!
//! It is not very featureful right now, and should be considered a work in progress.

use core::marker::PhantomData;
use core::ops::{Add, Div, Mul, Sub};

use super::*;

/// The terminating type for type arrays.
#[derive(Eq, PartialEq, Ord, PartialOrd, Clone, Copy, Hash, Debug)]
pub struct ATerm;

impl TypeArray for ATerm {}

/// `TArr` is a type that acts as an array of types. It is defined similarly to `UInt`, only its
/// values can be more than bits, and it is designed to act as an array. So you can only add two if
/// they have the same number of elements, for example.
///
/// This array is only really designed to contain `Integer` types. If you use it with others, you
/// may find it lacking functionality.
#[derive(Eq, PartialEq, Ord, PartialOrd, Clone, Copy, Hash, Debug)]
pub struct TArr<V, A> {
    _marker: PhantomData<(V, A)>,
}

impl<V, A> TypeArray for TArr<V, A> {}

/// Create a new type-level arrray. Only usable on Rust 1.13.0 or newer.
///
/// There's not a whole lot you can do with it right now.
///
/// # Example
/// ```rust
/// #[macro_use]
/// extern crate typenum;
/// use typenum::consts::*;
///
/// type Array = tarr![P3, N4, Z0, P38];
/// # fn main() { let _: Array; }
#[macro_export]
macro_rules! tarr {
    () => ( $crate::ATerm );
    ($n:ty) => ( $crate::TArr<$n, $crate::ATerm> );
    ($n:ty,) => ( $crate::TArr<$n, $crate::ATerm> );
    ($n:ty, $($tail:ty),+) => ( $crate::TArr<$n, tarr![$($tail),+]> );
    ($n:ty, $($tail:ty),+,) => ( $crate::TArr<$n, tarr![$($tail),+]> );
}

// ---------------------------------------------------------------------------------------
// Length

/// Length of `ATerm` by itself is 0
impl Len for ATerm {
    type Output = U0;
    fn len(&self) -> Self::Output {
        UTerm
    }
}

/// Size of a `TypeArray`
impl<V, A> Len for TArr<V, A>
where
    A: Len,
    Length<A>: Add<B1>,
    Sum<Length<A>, B1>: Unsigned,
{
    type Output = Add1<Length<A>>;
    fn len(&self) -> Self::Output {
        unsafe { ::core::mem::uninitialized() }
    }
}

// ---------------------------------------------------------------------------------------
// Add arrays
// Note that two arrays are only addable if they are the same length.

impl Add<ATerm> for ATerm {
    type Output = ATerm;
    fn add(self, _: ATerm) -> Self::Output {
        ATerm
    }
}

impl<Al, Vl, Ar, Vr> Add<TArr<Vr, Ar>> for TArr<Vl, Al>
where
    Al: Add<Ar>,
    Vl: Add<Vr>,
{
    type Output = TArr<Sum<Vl, Vr>, Sum<Al, Ar>>;
    fn add(self, _: TArr<Vr, Ar>) -> Self::Output {
        unsafe { ::core::mem::uninitialized() }
    }
}

// ---------------------------------------------------------------------------------------
// Subtract arrays
// Note that two arrays are only subtractable if they are the same length.

impl Sub<ATerm> for ATerm {
    type Output = ATerm;
    fn sub(self, _: ATerm) -> Self::Output {
        ATerm
    }
}

impl<Vl, Al, Vr, Ar> Sub<TArr<Vr, Ar>> for TArr<Vl, Al>
where
    Vl: Sub<Vr>,
    Al: Sub<Ar>,
{
    type Output = TArr<Diff<Vl, Vr>, Diff<Al, Ar>>;
    fn sub(self, _: TArr<Vr, Ar>) -> Self::Output {
        unsafe { ::core::mem::uninitialized() }
    }
}

// ---------------------------------------------------------------------------------------
// Multiply an array by a scalar

impl<Rhs> Mul<Rhs> for ATerm {
    type Output = ATerm;
    fn mul(self, _: Rhs) -> Self::Output {
        ATerm
    }
}

impl<V, A, Rhs> Mul<Rhs> for TArr<V, A>
where
    V: Mul<Rhs>,
    A: Mul<Rhs>,
{
    type Output = TArr<Prod<V, Rhs>, Prod<A, Rhs>>;
    fn mul(self, _: Rhs) -> Self::Output {
        unsafe { ::core::mem::uninitialized() }
    }
}

impl Mul<ATerm> for Z0 {
    type Output = ATerm;
    fn mul(self, _: ATerm) -> Self::Output {
        ATerm
    }
}

impl<U> Mul<ATerm> for PInt<U>
where
    U: Unsigned + NonZero,
{
    type Output = ATerm;
    fn mul(self, _: ATerm) -> Self::Output {
        ATerm
    }
}

impl<U> Mul<ATerm> for NInt<U>
where
    U: Unsigned + NonZero,
{
    type Output = ATerm;
    fn mul(self, _: ATerm) -> Self::Output {
        ATerm
    }
}

impl<V, A> Mul<TArr<V, A>> for Z0
where
    Z0: Mul<A>,
{
    type Output = TArr<Z0, Prod<Z0, A>>;
    fn mul(self, _: TArr<V, A>) -> Self::Output {
        unsafe { ::core::mem::uninitialized() }
    }
}

impl<V, A, U> Mul<TArr<V, A>> for PInt<U>
where
    U: Unsigned + NonZero,
    PInt<U>: Mul<A> + Mul<V>,
{
    type Output = TArr<Prod<PInt<U>, V>, Prod<PInt<U>, A>>;
    fn mul(self, _: TArr<V, A>) -> Self::Output {
        unsafe { ::core::mem::uninitialized() }
    }
}

impl<V, A, U> Mul<TArr<V, A>> for NInt<U>
where
    U: Unsigned + NonZero,
    NInt<U>: Mul<A> + Mul<V>,
{
    type Output = TArr<Prod<NInt<U>, V>, Prod<NInt<U>, A>>;
    fn mul(self, _: TArr<V, A>) -> Self::Output {
        unsafe { ::core::mem::uninitialized() }
    }
}

// ---------------------------------------------------------------------------------------
// Divide an array by a scalar

impl<Rhs> Div<Rhs> for ATerm {
    type Output = ATerm;
    fn div(self, _: Rhs) -> Self::Output {
        ATerm
    }
}

impl<V, A, Rhs> Div<Rhs> for TArr<V, A>
where
    V: Div<Rhs>,
    A: Div<Rhs>,
{
    type Output = TArr<Quot<V, Rhs>, Quot<A, Rhs>>;
    fn div(self, _: Rhs) -> Self::Output {
        unsafe { ::core::mem::uninitialized() }
    }
}

// ---------------------------------------------------------------------------------------
// Partial Divide an array by a scalar

impl<Rhs> PartialDiv<Rhs> for ATerm {
    type Output = ATerm;
    fn partial_div(self, _: Rhs) -> Self::Output {
        ATerm
    }
}

impl<V, A, Rhs> PartialDiv<Rhs> for TArr<V, A>
where
    V: PartialDiv<Rhs>,
    A: PartialDiv<Rhs>,
{
    type Output = TArr<PartialQuot<V, Rhs>, PartialQuot<A, Rhs>>;
    fn partial_div(self, _: Rhs) -> Self::Output {
        unsafe { ::core::mem::uninitialized() }
    }
}

// ---------------------------------------------------------------------------------------
// Modulo an array by a scalar
use core::ops::Rem;

impl<Rhs> Rem<Rhs> for ATerm {
    type Output = ATerm;
    fn rem(self, _: Rhs) -> Self::Output {
        ATerm
    }
}

impl<V, A, Rhs> Rem<Rhs> for TArr<V, A>
where
    V: Rem<Rhs>,
    A: Rem<Rhs>,
{
    type Output = TArr<Mod<V, Rhs>, Mod<A, Rhs>>;
    fn rem(self, _: Rhs) -> Self::Output {
        unsafe { ::core::mem::uninitialized() }
    }
}

// ---------------------------------------------------------------------------------------
// Negate an array
use core::ops::Neg;

impl Neg for ATerm {
    type Output = ATerm;
    fn neg(self) -> Self::Output {
        ATerm
    }
}

impl<V, A> Neg for TArr<V, A>
where
    V: Neg,
    A: Neg,
{
    type Output = TArr<Negate<V>, Negate<A>>;
    fn neg(self) -> Self::Output {
        unsafe { ::core::mem::uninitialized() }
    }
}