1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
//! Initialization code ("crt0") written in Rust //! //! This is for bare metal systems where there is no ELF loader or OS to take //! care of initializing RAM for the program. //! //! # Initializing RAM //! //! On the linker script side, we must assign names (symbols) to the boundaries //! of the `.bss` and `.data` sections. //! //! ``` text //! .bss : ALIGN(4) //! { //! _sbss = .; //! *(.bss.*); //! _ebss = ALIGN(4); //! } > RAM //! //! .data : ALIGN(4) //! { //! _sdata = .; //! *(.data.*); //! _edata = ALIGN(4); //! } > RAM AT > FLASH //! //! _sidata = LOADADDR(.data); //! ``` //! //! On the Rust side, we must bind to those symbols using an `extern` block. //! //! ``` //! unsafe fn before_main() { //! // The type, `u32`, indicates that the memory is 4-byte aligned //! extern "C" { //! static mut _sbss: u32; //! static mut _ebss: u32; //! //! static mut _sdata: u32; //! static mut _edata: u32; //! //! static _sidata: u32; //! } //! //! zero_bss(&mut _sbss, &mut _ebss); //! init_data(&mut _sdata, &mut _edata, &_sidata); //! } //! ``` //! //! # `.init_array` & `.pre_init_array` //! //! This crate also provides an API to add "life before main" functionality to //! bare metal systems. //! //! On the linker script side, instruct the linker to keep the `.init_array` //! sections from input object files. Store the start and end address of the //! merged `.init_array` section. //! //! ``` text //! .text : //! { //! /* .. */ //! _init_array_start = ALIGN(4); //! KEEP(*(.init_array)); //! _init_array_end = ALIGN(4); //! /* .. */ //! } //! ``` //! //! On the startup code, invoke the `run_init_array` function *before* you call //! the user `main`. //! //! ``` //! unsafe fn start() { //! extern "C" { //! static _init_array_start: extern "C" fn(); //! static _init_array_end: extern "C" fn(); //! } //! //! ::r0::run_init_array(&_init_array_start, &_init_array_end); //! //! extern "C" { //! fn main(argc: isize, argv: *const *const u8) -> isize; //! } //! //! main(); //! } //! ``` //! //! Then the user application can use this crate `init_array!` macro to run code //! before `main`. //! //! ``` //! init_array!(before_main, { //! println!("Hello"); //! }); //! //! fn main() { //! println!("World"); //! } //! ``` #![deny(warnings)] #![no_std] use core::{mem, ptr, slice}; /// Initializes the `.data` section /// /// # Arguments /// /// - `sdata`. Pointer to the start of the `.data` section. /// - `edata`. Pointer to the open/non-inclusive end of the `.data` section. /// (The value behind this pointer will not be modified) /// - `sidata`. `.data` section Load Memory Address (LMA) /// - Use `T` to indicate the alignment of the `.data` section and its LMA. /// /// # Safety /// /// - Must be called exactly once /// - `mem::size_of::<T>()` must be non-zero /// - `edata >= sdata` /// - The `sdata -> edata` region must not overlap with the `sidata -> ...` /// region /// - `sdata`, `edata` and `sidata` must be `T` aligned. pub unsafe fn init_data<T>( mut sdata: *mut T, edata: *mut T, mut sidata: *const T, ) where T: Copy, { while sdata < edata { ptr::write(sdata, ptr::read(sidata)); sdata = sdata.offset(1); sidata = sidata.offset(1); } } pub unsafe fn run_init_array( init_array_start: &extern "C" fn(), init_array_end: &extern "C" fn(), ) { let n = (init_array_end as *const _ as usize - init_array_start as *const _ as usize) / mem::size_of::<extern "C" fn()>(); for f in slice::from_raw_parts(init_array_start, n) { f(); } } /// Zeroes the `.bss` section /// /// # Arguments /// /// - `sbss`. Pointer to the start of the `.bss` section. /// - `ebss`. Pointer to the open/non-inclusive end of the `.bss` section. /// (The value behind this pointer will not be modified) /// - Use `T` to indicate the alignment of the `.bss` section. /// /// # Safety /// /// - Must be called exactly once /// - `mem::size_of::<T>()` must be non-zero /// - `ebss >= sbss` /// - `sbss` and `ebss` must be `T` aligned. pub unsafe fn zero_bss<T>(mut sbss: *mut T, ebss: *mut T) where T: Copy, { while sbss < ebss { // NOTE(volatile) to prevent this from being transformed into `memclr` ptr::write_volatile(sbss, mem::zeroed()); sbss = sbss.offset(1); } } #[macro_export] macro_rules! pre_init_array { ($name:ident, $body:expr) => { #[allow(dead_code)] unsafe extern "C" fn $name() { #[link_section = ".pre_init_array"] #[used] static PRE_INIT_ARRAY_ELEMENT: unsafe extern "C" fn() = $name; #[inline(always)] fn inner() { $body } inner() } } } #[macro_export] macro_rules! init_array { ($name:ident, $body:expr) => { #[allow(dead_code)] unsafe extern "C" fn $name() { #[link_section = ".init_array"] #[used] static INIT_ARRAY_ELEMENT: unsafe extern "C" fn() = $name; #[inline(always)] fn inner() { $body } inner() } } }