1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
use core::cmp;

use cast::u32;
use stm32f103xx::{rcc, RCC};

use flash::ACR;
use time::Hertz;

/// Extension trait that constrains the `RCC` peripheral
pub trait RccExt {
    /// Constrains the `RCC` peripheral so it plays nicely with the other abstractions
    fn constrain(self) -> Rcc;
}

impl RccExt for RCC {
    fn constrain(self) -> Rcc {
        Rcc {
            ahb: AHB { _0: () },
            apb1: APB1 { _0: () },
            apb2: APB2 { _0: () },
            cfgr: CFGR {
                hclk: None,
                pclk1: None,
                pclk2: None,
                sysclk: None,
            },
        }
    }
}

/// Constrained RCC peripheral
pub struct Rcc {
    /// AMBA High-performance Bus (AHB) registers
    pub ahb: AHB,
    /// Advanced Peripheral Bus 1 (APB1) registers
    pub apb1: APB1,
    /// Advanced Peripheral Bus 2 (APB2) registers
    pub apb2: APB2,
    pub cfgr: CFGR,
}

/// AMBA High-performance Bus (AHB) registers
pub struct AHB {
    _0: (),
}

impl AHB {
    pub(crate) fn enr(&mut self) -> &rcc::AHBENR {
        // NOTE(unsafe) this proxy grants exclusive access to this register
        unsafe { &(*RCC::ptr()).ahbenr }
    }
}

/// Advanced Peripheral Bus 1 (APB1) registers
pub struct APB1 {
    _0: (),
}

impl APB1 {
    pub(crate) fn enr(&mut self) -> &rcc::APB1ENR {
        // NOTE(unsafe) this proxy grants exclusive access to this register
        unsafe { &(*RCC::ptr()).apb1enr }
    }

    pub(crate) fn rstr(&mut self) -> &rcc::APB1RSTR {
        // NOTE(unsafe) this proxy grants exclusive access to this register
        unsafe { &(*RCC::ptr()).apb1rstr }
    }
}

/// Advanced Peripheral Bus 2 (APB2) registers
pub struct APB2 {
    _0: (),
}

impl APB2 {
    pub(crate) fn enr(&mut self) -> &rcc::APB2ENR {
        // NOTE(unsafe) this proxy grants exclusive access to this register
        unsafe { &(*RCC::ptr()).apb2enr }
    }

    pub(crate) fn rstr(&mut self) -> &rcc::APB2RSTR {
        // NOTE(unsafe) this proxy grants exclusive access to this register
        unsafe { &(*RCC::ptr()).apb2rstr }
    }
}

const HSI: u32 = 8_000_000; // Hz

pub struct CFGR {
    hclk: Option<u32>,
    pclk1: Option<u32>,
    pclk2: Option<u32>,
    sysclk: Option<u32>,
}

impl CFGR {
    pub fn hclk<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.hclk = Some(freq.into().0);
        self
    }

    pub fn pclk1<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.pclk1 = Some(freq.into().0);
        self
    }

    pub fn pclk2<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.pclk2 = Some(freq.into().0);
        self
    }

    pub fn sysclk<F>(mut self, freq: F) -> Self
    where
        F: Into<Hertz>,
    {
        self.sysclk = Some(freq.into().0);
        self
    }

    pub fn freeze(self, acr: &mut ACR) -> Clocks {
        // TODO ADC & USB clocks

        let pllmul = (4 * self.sysclk.unwrap_or(HSI) + HSI) / HSI / 2;
        let pllmul = cmp::min(cmp::max(pllmul, 2), 16);
        let pllmul_bits = if pllmul == 2 {
            None
        } else {
            Some(pllmul as u8 - 2)
        };

        let sysclk = pllmul * HSI / 2;

        assert!(sysclk < 72_000_000);

        let hpre_bits = self.hclk
            .map(|hclk| match sysclk / hclk {
                0 => unreachable!(),
                1 => 0b0111,
                2 => 0b1000,
                3...5 => 0b1001,
                6...11 => 0b1010,
                12...39 => 0b1011,
                40...95 => 0b1100,
                96...191 => 0b1101,
                192...383 => 0b1110,
                _ => 0b1111,
            })
            .unwrap_or(0b0111);

        let hclk = sysclk / (1 << (hpre_bits - 0b0111));

        assert!(hclk < 72_000_000);

        let ppre1_bits = self.pclk1
            .map(|pclk1| match hclk / pclk1 {
                0 => unreachable!(),
                1 => 0b011,
                2 => 0b100,
                3...5 => 0b101,
                6...11 => 0b110,
                _ => 0b111,
            })
            .unwrap_or(0b011);

        let ppre1 = 1 << (ppre1_bits - 0b011);
        let pclk1 = hclk / u32(ppre1);

        assert!(pclk1 < 36_000_000);

        let ppre2_bits = self.pclk2
            .map(|pclk2| match hclk / pclk2 {
                0 => unreachable!(),
                1 => 0b011,
                2 => 0b100,
                3...5 => 0b101,
                6...11 => 0b110,
                _ => 0b111,
            })
            .unwrap_or(0b011);

        let ppre2 = 1 << (ppre2_bits - 0b011);
        let pclk2 = hclk / u32(ppre2);

        assert!(pclk2 < 72_000_000);

        // adjust flash wait states
        unsafe {
            acr.acr().write(|w| {
                w.latency().bits(if sysclk <= 24_000_000 {
                    0b000
                } else if sysclk <= 48_000_000 {
                    0b001
                } else {
                    0b010
                })
            })
        }

        let rcc = unsafe { &*RCC::ptr() };
        if let Some(pllmul_bits) = pllmul_bits {
            // use PLL as source

            rcc.cfgr.write(|w| unsafe { w.pllmul().bits(pllmul_bits) });

            rcc.cr.write(|w| w.pllon().enabled());

            while rcc.cr.read().pllrdy().is_unlocked() {}

            rcc.cfgr.modify(|_, w| unsafe {
                w.ppre2()
                    .bits(ppre2_bits)
                    .ppre1()
                    .bits(ppre1_bits)
                    .hpre()
                    .bits(hpre_bits)
                    .sw()
                    .pll()
            });
        } else {
            // use HSI as source

            rcc.cfgr.write(|w| unsafe {
                w.ppre2()
                    .bits(ppre2_bits)
                    .ppre1()
                    .bits(ppre1_bits)
                    .hpre()
                    .bits(hpre_bits)
                    .sw()
                    .hsi()
            });
        }

        Clocks {
            hclk: Hertz(hclk),
            pclk1: Hertz(pclk1),
            pclk2: Hertz(pclk2),
            ppre1,
            ppre2,
            sysclk: Hertz(sysclk),
        }
    }
}

/// Frozen clock frequencies
///
/// The existence of this value indicates that the clock configuration can no longer be changed
#[derive(Clone, Copy)]
pub struct Clocks {
    hclk: Hertz,
    pclk1: Hertz,
    pclk2: Hertz,
    ppre1: u8,
    ppre2: u8,
    sysclk: Hertz,
}

impl Clocks {
    /// Returns the frequency of the AHB
    pub fn hclk(&self) -> Hertz {
        self.hclk
    }

    /// Returns the frequency of the APB1
    pub fn pclk1(&self) -> Hertz {
        self.pclk1
    }

    /// Returns the frequency of the APB2
    pub fn pclk2(&self) -> Hertz {
        self.pclk2
    }

    pub(crate) fn ppre1(&self) -> u8 {
        self.ppre1
    }

    // TODO remove `allow`
    #[allow(dead_code)]
    pub(crate) fn ppre2(&self) -> u8 {
        self.ppre2
    }

    /// Returns the system (core) frequency
    pub fn sysclk(&self) -> Hertz {
        self.sysclk
    }
}