Trait std::marker::Sync 1.0.0
[−]
[src]
pub unsafe trait Sync { }
Types for which it is safe to share references between threads.
This trait is automatically implemented when the compiler determines it's appropriate.
The precise definition is: a type T
is Sync
if &T
is
Send
. In other words, if there is no possibility of
undefined behavior (including data races) when passing
&T
references between threads.
As one would expect, primitive types like u8
and f64
are all Sync
, and so are simple aggregate types containing them,
like tuples, structs and enums. More examples of basic Sync
types include "immutable" types like &T
, and those with simple
inherited mutability, such as Box<T>
, Vec<T>
and
most other collection types. (Generic parameters need to be Sync
for their container to be Sync
.)
A somewhat surprising consequence of the definition is that &mut T
is Sync
(if T
is Sync
) even though it seems like that might
provide unsynchronized mutation. The trick is that a mutable
reference behind a shared reference (that is, & &mut T
)
becomes read-only, as if it were a & &T
. Hence there is no risk
of a data race.
Types that are not Sync
are those that have "interior
mutability" in a non-thread-safe form, such as cell::Cell
and cell::RefCell
. These types allow for mutation of
their contents even through an immutable, shared reference. For
example the set
method on Cell<T>
takes &self
, so it requires
only a shared reference &Cell<T>
. The method performs no
synchronization, thus Cell
cannot be Sync
.
Another example of a non-Sync
type is the reference-counting
pointer rc::Rc
. Given any reference &Rc<T>
, you can clone
a new Rc<T>
, modifying the reference counts in a non-atomic way.
For cases when one does need thread-safe interior mutability,
Rust provides atomic data types, as well as explicit locking via
sync::Mutex
and sync::RWLock
. These types
ensure that any mutation cannot cause data races, hence the types
are Sync
. Likewise, sync::Arc
provides a thread-safe
analogue of Rc
.
Any types with interior mutability must also use the
cell::UnsafeCell
wrapper around the value(s) which
can be mutated through a shared reference. Failing to doing this is
undefined behavior. For example, transmute
-ing
from &T
to &mut T
is invalid.
See the Nomicon for more
details about Sync
.
Implementors
impl<T> Sync for Arc<T> where T: Send + Sync + ?Sized
impl<T> Sync for alloc::arc::Weak<T> where T: Send + Sync + ?Sized
impl<T> !Sync for Rc<T> where T: ?Sized
impl<T> !Sync for std::rc::Weak<T> where T: ?Sized
impl<T> Sync for Unique<T> where T: Sync + ?Sized
impl<T> !Sync for Shared<T> where T: ?Sized
impl<T> !Sync for *const T where T: ?Sized
impl<T> !Sync for *mut T where T: ?Sized
impl Sync for AtomicBool
impl<T> Sync for AtomicPtr<T>
impl<T> !Sync for Cell<T>
impl<T> !Sync for RefCell<T> where T: ?Sized
impl<T> !Sync for UnsafeCell<T> where T: ?Sized
impl<'a, T> Sync for std::slice::Iter<'a, T> where T: Sync
impl<'a, T> Sync for std::slice::IterMut<'a, T> where T: Sync
impl Sync for AtomicI8
impl Sync for AtomicU8
impl Sync for AtomicI16
impl Sync for AtomicU16
impl Sync for AtomicI32
impl Sync for AtomicU32
impl Sync for AtomicI64
impl Sync for AtomicU64
impl Sync for AtomicIsize
impl Sync for AtomicUsize
impl<T> Sync for LinkedList<T> where T: Sync
impl<'a, T> Sync for std::collections::linked_list::Iter<'a, T> where T: Sync
impl<'a, T> Sync for std::collections::linked_list::IterMut<'a, T> where T: Sync
impl<'a> Sync for std::string::Drain<'a>
impl<T> Sync for IntoIter<T> where T: Sync
impl<'a, T> Sync for std::vec::Drain<'a, T> where T: Sync
impl<'a, T> Sync for std::collections::vec_deque::Drain<'a, T> where T: Sync