1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
//! A priority queue implemented with a binary heap. //! //! Insertion and popping the largest element have `O(log n)` time complexity. Checking the largest //! / smallest element is `O(1)`. // TODO not yet implemented // Converting a vector to a binary heap can be done in-place, and has `O(n)` complexity. A binary // heap can also be converted to a sorted vector in-place, allowing it to be used for an `O(n log // n)` in-place heapsort. use core::{ fmt, marker::PhantomData, mem::{self, ManuallyDrop}, ptr, slice, }; use generic_array::{ArrayLength, GenericArray}; use crate::sealed::binary_heap::Kind; /// Min-heap pub enum Min {} /// Max-heap pub enum Max {} impl<A, K> crate::i::BinaryHeap<A, K> { /// `BinaryHeap` `const` constructor; wrap the returned value in /// [`BinaryHeap`](../struct.BinaryHeap.html) pub const fn new() -> Self { Self { _kind: PhantomData, data: crate::i::Vec::new(), } } } /// A priority queue implemented with a binary heap. /// /// This can be either a min-heap or a max-heap. /// /// It is a logic error for an item to be modified in such a way that the item's ordering relative /// to any other item, as determined by the `Ord` trait, changes while it is in the heap. This is /// normally only possible through `Cell`, `RefCell`, global state, I/O, or unsafe code. /// /// ``` /// use heapless::binary_heap::{BinaryHeap, Max}; /// use heapless::consts::*; /// /// let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); /// /// // We can use peek to look at the next item in the heap. In this case, /// // there's no items in there yet so we get None. /// assert_eq!(heap.peek(), None); /// /// // Let's add some scores... /// heap.push(1).unwrap(); /// heap.push(5).unwrap(); /// heap.push(2).unwrap(); /// /// // Now peek shows the most important item in the heap. /// assert_eq!(heap.peek(), Some(&5)); /// /// // We can check the length of a heap. /// assert_eq!(heap.len(), 3); /// /// // We can iterate over the items in the heap, although they are returned in /// // a random order. /// for x in &heap { /// println!("{}", x); /// } /// /// // If we instead pop these scores, they should come back in order. /// assert_eq!(heap.pop(), Some(5)); /// assert_eq!(heap.pop(), Some(2)); /// assert_eq!(heap.pop(), Some(1)); /// assert_eq!(heap.pop(), None); /// /// // We can clear the heap of any remaining items. /// heap.clear(); /// /// // The heap should now be empty. /// assert!(heap.is_empty()) /// ``` pub struct BinaryHeap<T, N, KIND>( #[doc(hidden)] pub crate::i::BinaryHeap<GenericArray<T, N>, KIND>, ) where T: Ord, N: ArrayLength<T>, KIND: Kind; impl<T, N, K> BinaryHeap<T, N, K> where T: Ord, N: ArrayLength<T>, K: Kind, { /* Constructors */ /// Creates an empty BinaryHeap as a $K-heap. /// /// ``` /// use heapless::binary_heap::{BinaryHeap, Max}; /// use heapless::consts::*; /// /// // allocate the binary heap on the stack /// let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); /// heap.push(4).unwrap(); /// /// // allocate the binary heap in a static variable /// static mut HEAP: BinaryHeap<i32, U8, Max> = BinaryHeap(heapless::i::BinaryHeap::new()); /// ``` pub fn new() -> Self { BinaryHeap(crate::i::BinaryHeap::new()) } /* Public API */ /// Returns the capacity of the binary heap. pub fn capacity(&self) -> usize { self.0.data.capacity() } /// Drops all items from the binary heap. /// /// ``` /// use heapless::binary_heap::{BinaryHeap, Max}; /// use heapless::consts::*; /// /// let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); /// heap.push(1).unwrap(); /// heap.push(3).unwrap(); /// /// assert!(!heap.is_empty()); /// /// heap.clear(); /// /// assert!(heap.is_empty()); /// ``` pub fn clear(&mut self) { self.0.data.clear() } /// Returns the length of the binary heap. /// /// ``` /// use heapless::binary_heap::{BinaryHeap, Max}; /// use heapless::consts::*; /// /// let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); /// heap.push(1).unwrap(); /// heap.push(3).unwrap(); /// /// assert_eq!(heap.len(), 2); /// ``` pub fn len(&self) -> usize { self.0.data.len } /// Checks if the binary heap is empty. /// /// ``` /// use heapless::binary_heap::{BinaryHeap, Max}; /// use heapless::consts::*; /// /// let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); /// /// assert!(heap.is_empty()); /// /// heap.push(3).unwrap(); /// heap.push(5).unwrap(); /// heap.push(1).unwrap(); /// /// assert!(!heap.is_empty()); /// ``` pub fn is_empty(&self) -> bool { self.len() == 0 } /// Returns an iterator visiting all values in the underlying vector, in arbitrary order. /// /// ``` /// use heapless::binary_heap::{BinaryHeap, Max}; /// use heapless::consts::*; /// /// let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); /// heap.push(1).unwrap(); /// heap.push(2).unwrap(); /// heap.push(3).unwrap(); /// heap.push(4).unwrap(); /// /// // Print 1, 2, 3, 4 in arbitrary order /// for x in heap.iter() { /// println!("{}", x); /// /// } /// ``` pub fn iter(&self) -> slice::Iter<'_, T> { self.0.data.as_slice().iter() } /// Returns a mutable iterator visiting all values in the underlying vector, in arbitrary order. /// /// **WARNING** Mutating the items in the binary heap can leave the heap in an inconsistent /// state. pub fn iter_mut(&mut self) -> slice::IterMut<'_, T> { self.0.data.as_mut_slice().iter_mut() } /// Returns the *top* (greatest if max-heap, smallest if min-heap) item in the binary heap, or /// None if it is empty. /// /// ``` /// use heapless::binary_heap::{BinaryHeap, Max}; /// use heapless::consts::*; /// /// let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); /// assert_eq!(heap.peek(), None); /// /// heap.push(1).unwrap(); /// heap.push(5).unwrap(); /// heap.push(2).unwrap(); /// assert_eq!(heap.peek(), Some(&5)); /// ``` pub fn peek(&self) -> Option<&T> { self.0.data.as_slice().get(0) } /// Removes the *top* (greatest if max-heap, smallest if min-heap) item from the binary heap and /// returns it, or None if it is empty. /// /// ``` /// use heapless::binary_heap::{BinaryHeap, Max}; /// use heapless::consts::*; /// /// let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); /// heap.push(1).unwrap(); /// heap.push(3).unwrap(); /// /// assert_eq!(heap.pop(), Some(3)); /// assert_eq!(heap.pop(), Some(1)); /// assert_eq!(heap.pop(), None); /// ``` pub fn pop(&mut self) -> Option<T> { if self.is_empty() { None } else { Some(unsafe { self.pop_unchecked() }) } } /// Removes the *top* (greatest if max-heap, smallest if min-heap) item from the binary heap and /// returns it, without checking if the binary heap is empty. pub unsafe fn pop_unchecked(&mut self) -> T { let mut item = self.0.data.pop_unchecked(); if !self.is_empty() { mem::swap(&mut item, self.0.data.as_mut_slice().get_unchecked_mut(0)); self.sift_down_to_bottom(0); } item } /// Pushes an item onto the binary heap. /// /// ``` /// use heapless::binary_heap::{BinaryHeap, Max}; /// use heapless::consts::*; /// /// let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new(); /// heap.push(3).unwrap(); /// heap.push(5).unwrap(); /// heap.push(1).unwrap(); /// /// assert_eq!(heap.len(), 3); /// assert_eq!(heap.peek(), Some(&5)); /// ``` pub fn push(&mut self, item: T) -> Result<(), T> { if self.0.data.is_full() { return Err(item); } unsafe { self.push_unchecked(item) } Ok(()) } /// Pushes an item onto the binary heap without first checking if it's full. pub unsafe fn push_unchecked(&mut self, item: T) { let old_len = self.len(); self.0.data.push_unchecked(item); self.sift_up(0, old_len); } /* Private API */ fn sift_down_to_bottom(&mut self, mut pos: usize) { let end = self.len(); let start = pos; unsafe { let mut hole = Hole::new(self.0.data.as_mut_slice(), pos); let mut child = 2 * pos + 1; while child < end { let right = child + 1; // compare with the greater of the two children if right < end && hole.get(child).cmp(hole.get(right)) != K::ordering() { child = right; } hole.move_to(child); child = 2 * hole.pos() + 1; } pos = hole.pos; } self.sift_up(start, pos); } fn sift_up(&mut self, start: usize, pos: usize) -> usize { unsafe { // Take out the value at `pos` and create a hole. let mut hole = Hole::new(self.0.data.as_mut_slice(), pos); while hole.pos() > start { let parent = (hole.pos() - 1) / 2; if hole.element().cmp(hole.get(parent)) != K::ordering() { break; } hole.move_to(parent); } hole.pos() } } } /// Hole represents a hole in a slice i.e. an index without valid value /// (because it was moved from or duplicated). /// In drop, `Hole` will restore the slice by filling the hole /// position with the value that was originally removed. struct Hole<'a, T> { data: &'a mut [T], /// `elt` is always `Some` from new until drop. elt: ManuallyDrop<T>, pos: usize, } impl<'a, T> Hole<'a, T> { /// Create a new Hole at index `pos`. /// /// Unsafe because pos must be within the data slice. #[inline] unsafe fn new(data: &'a mut [T], pos: usize) -> Self { debug_assert!(pos < data.len()); let elt = ptr::read(data.get_unchecked(pos)); Hole { data, elt: ManuallyDrop::new(elt), pos, } } #[inline] fn pos(&self) -> usize { self.pos } /// Returns a reference to the element removed. #[inline] fn element(&self) -> &T { &self.elt } /// Returns a reference to the element at `index`. /// /// Unsafe because index must be within the data slice and not equal to pos. #[inline] unsafe fn get(&self, index: usize) -> &T { debug_assert!(index != self.pos); debug_assert!(index < self.data.len()); self.data.get_unchecked(index) } /// Move hole to new location /// /// Unsafe because index must be within the data slice and not equal to pos. #[inline] unsafe fn move_to(&mut self, index: usize) { debug_assert!(index != self.pos); debug_assert!(index < self.data.len()); let index_ptr: *const _ = self.data.get_unchecked(index); let hole_ptr = self.data.get_unchecked_mut(self.pos); ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1); self.pos = index; } } impl<'a, T> Drop for Hole<'a, T> { #[inline] fn drop(&mut self) { // fill the hole again unsafe { let pos = self.pos; ptr::write(self.data.get_unchecked_mut(pos), ptr::read(&*self.elt)); } } } impl<T, N, K> Default for BinaryHeap<T, N, K> where T: Ord, N: ArrayLength<T>, K: Kind, { fn default() -> Self { Self::new() } } impl<T, N, K> Clone for BinaryHeap<T, N, K> where N: ArrayLength<T>, K: Kind, T: Ord + Clone, { fn clone(&self) -> Self { BinaryHeap(crate::i::BinaryHeap { _kind: self.0._kind, data: self.0.data.clone(), }) } } impl<T, N, K> Drop for BinaryHeap<T, N, K> where N: ArrayLength<T>, K: Kind, T: Ord, { fn drop(&mut self) { unsafe { ptr::drop_in_place(self.0.data.as_mut_slice()) } } } impl<T, N, K> fmt::Debug for BinaryHeap<T, N, K> where N: ArrayLength<T>, K: Kind, T: Ord + fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.iter()).finish() } } impl<'a, T, N, K> IntoIterator for &'a BinaryHeap<T, N, K> where N: ArrayLength<T>, K: Kind, T: Ord, { type Item = &'a T; type IntoIter = slice::Iter<'a, T>; fn into_iter(self) -> Self::IntoIter { self.iter() } } #[cfg(test)] mod tests { use std::vec::Vec; use crate::{ binary_heap::{self, BinaryHeap, Min}, consts::*, }; #[test] fn static_new() { static mut _B: BinaryHeap<i32, U16, Min> = BinaryHeap(crate::i::BinaryHeap::new()); } #[test] fn min() { let mut heap = BinaryHeap::<_, U16, Min>::new(); heap.push(1).unwrap(); heap.push(2).unwrap(); heap.push(3).unwrap(); heap.push(17).unwrap(); heap.push(19).unwrap(); heap.push(36).unwrap(); heap.push(7).unwrap(); heap.push(25).unwrap(); heap.push(100).unwrap(); assert_eq!( heap.iter().cloned().collect::<Vec<_>>(), [1, 2, 3, 17, 19, 36, 7, 25, 100] ); assert_eq!(heap.pop(), Some(1)); assert_eq!( heap.iter().cloned().collect::<Vec<_>>(), [2, 17, 3, 25, 19, 36, 7, 100] ); assert_eq!(heap.pop(), Some(2)); assert_eq!(heap.pop(), Some(3)); assert_eq!(heap.pop(), Some(7)); assert_eq!(heap.pop(), Some(17)); assert_eq!(heap.pop(), Some(19)); assert_eq!(heap.pop(), Some(25)); assert_eq!(heap.pop(), Some(36)); assert_eq!(heap.pop(), Some(100)); assert_eq!(heap.pop(), None); } #[test] fn max() { let mut heap = BinaryHeap::<_, U16, binary_heap::Max>::new(); heap.push(1).unwrap(); heap.push(2).unwrap(); heap.push(3).unwrap(); heap.push(17).unwrap(); heap.push(19).unwrap(); heap.push(36).unwrap(); heap.push(7).unwrap(); heap.push(25).unwrap(); heap.push(100).unwrap(); assert_eq!( heap.iter().cloned().collect::<Vec<_>>(), [100, 36, 19, 25, 3, 2, 7, 1, 17] ); assert_eq!(heap.pop(), Some(100)); assert_eq!( heap.iter().cloned().collect::<Vec<_>>(), [36, 25, 19, 17, 3, 2, 7, 1] ); assert_eq!(heap.pop(), Some(36)); assert_eq!(heap.pop(), Some(25)); assert_eq!(heap.pop(), Some(19)); assert_eq!(heap.pop(), Some(17)); assert_eq!(heap.pop(), Some(7)); assert_eq!(heap.pop(), Some(3)); assert_eq!(heap.pop(), Some(2)); assert_eq!(heap.pop(), Some(1)); assert_eq!(heap.pop(), None); } }